Modelling Image Complexity by Independent Component Analysis, with Application to Content-Based Image Retrieval
نویسندگان
چکیده
Estimating the degree of similarity between images is a challenging task as the similarity always depends on the context. Because of this context dependency, it seems quite impossible to create a universal metric for the task. The number of low-level features on which the judgement of similarity is based may be rather low, however. One approach to quantifying the similarity of images is to estimate the (joint) complexity of images based on these features. We present a novel method to estimate the complexity of images, based on ICA. We further use this to model joint complexity of images, which gives distances that can be used in content-based retrieval. We compare this new method to two other methods, namely estimating mutual information of images using marginal Kullback-Leibler divergence and approximating the Kolmogorov complexity of images using Normalized Compression Distance.
منابع مشابه
Content Based Radiographic Images Indexing and Retrieval Using Pattern Orientation Histogram
Introduction: Content Based Image Retrieval (CBIR) is a method of image searching and retrieval in a database. In medical applications, CBIR is a tool used by physicians to compare the previous and current medical images associated with patients pathological conditions. As the volume of pictorial information stored in medical image databases is in progress, efficient image indexing and retri...
متن کاملSemiautomatic Image Retrieval Using the High Level Semantic Labels
Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...
متن کاملSearching Query by Color Content of an Image Using Independent Component Analysis
Content-based image retrieval (CBIR), also known as query by image content (QBIC) and content-based visual information retrieval (CBVIR) is the application of computer vision to the image retrieval problem, that is, the problem of searching for digital images in large databases. In CBIR each image which is stored in the database has its features extracted and compared to the features of the que...
متن کاملImage retrieval using the combination of text-based and content-based algorithms
Image retrieval is an important research field which has received great attention in the last decades. In this paper, we present an approach for the image retrieval based on the combination of text-based and content-based features. For text-based features, keywords and for content-based features, color and texture features have been used. Query in this system contains some keywords and an input...
متن کاملImage Classification via Sparse Representation and Subspace Alignment
Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009